Sunday, July 19, 2015

Squares and Square Roots

                                                                 Squares
                                                                                  Multiplication Tips 
                                                                                 Cubes and Cube Roots 

properties of  square numbers:The numbers that have 0, 1, 4, 5, 6 or 9 in their units place maybe perfect squares where as the numbers that have 2, 3, 7 or 8 in their units place are never perfect squares.


 Number
Square number

If a number has 1 or 9 in the units place
Square number ends with 1

If  a number has 4 0r 6 at units places

Square number ends with 6

If number ends with 0 at units place

Square number ends with 00

If number ends with 5 at units place

Square number ends with 5.


             Numbers        
Square of the number           
1
1
2
4
3
9
4
16
5
25
6
36
7
49
8
64
9
81
10
100
11
121
12
144
13
169
14
196
15
225
16
256
17
289
18
324
19
361
20
400
21
441
22
484
23
529
24
576

             Numbers           
Square of the numbers     
25
625
26
676
27
729
28
784
29
841
30
900
35
1225
40
1600
45
2025
50
2500
55
3025
60
3600
65
4225
70
4900
75
5625
80
6400
85
7225
90
8100
95
9025
100
10000
125
15625
150
22500
175
30625
200
40000

Numbers  between  Square Numbers
12 =1(1)
22 = 4(2,3,4 ) between  12 and 22 we have 2 non square numbers
32=9(5,6,7,8,9) between 22 and 32 we have 4 non square numbers
42=16(10,11,12,13,14,15,16) between 32 and 42 we have 6 non square numbers
52=25(17,18,19,20,21,22,23,24,25) between 42 and 52 we have 8 non square numbers
So number of non square numbers between square numbers formula :
If first number   = n
Second number=n+1
   (n+1)2 - n  2  =2n+1
For example:
 If n =5
N+1= 6
According to formula 2*5+1 =11
Verify
52 =25
62 = 36(26,27,28,29,30,31,32,33,34,35,36)
Including second digit square number.
If we need only difference  the two square numbers
Means 25 to 36 we have 10 numbers difference
So formula for difference of the two square numbers is 2

Adding  Odd Numbers: If the numbers is a square number ,it has to be the sum of successive odd numbers starting from 1
1 (one odd number)                          =1=12
1+3 (sum of first two odd numbers)= 4=22
1+3+5(sum of first three odd num)  =9=32
1+3+5+7                                           =16=42
1+3+5+7+9                                      =25=52   
1+3+5+7+9+11                                =36=62
1+3+5+7+9+11+13                          =49=72
1+3+5+7+9+11+13+15                   =64=82
1+3+5+7+9+11+13+15+17             =81=92
1+3+5+7+9+11+13+15+17+19       =100=102

Sum of the consecutive natural numbers
32 = 9     =4+5
52=25    =12+13
72=49    =24+25
92=81   =40+41
112=121=60+61
132=169=84+85
152=225=112+113


Square Number patterns:
12           =                   1
112         =                1 2 1
1112       =            1 2 3 2 1
11112     =        1  2 3 4 3 2  1
Another interesting patterns
2² = 4
22² = 484
222² = 49284
_________________
92 = 81
992= 9801
9992 = 998001
99992 = 99980001
999992 = 9999800001
______________________________
1012 = 10201  
10012 = 1002001
100012 = 100020001 


Finding square of the number:


 23*23=(23)2  =(20+3)2

           =20(20+3)+3(20+3)

          =202+20*3+3*20+32

          =400+60+60+9

          =529


1.Finding the square root number by repeated subtraction:
Square number subtract by odd numbers. First take square of one number and subtract with 1. Then you get product again take that product subtract with consecutive odd number(3). Then again take second product and subtract with consecutive odd number(5).
For example:
81 =92
81 – 1 = 80
80 – 3 = 77
77 – 5 = 72
72 – 7 = 65
65 – 9 = 56
56 – 11 = 45
45 – 13 = 32
32 - 15  = 17
17 – 17 = 0

In above process will do  to get final product ‘0’ . count number of steps we did. That is the square root of given number.
In above we did 9 times . so that is 92

Other example 16:

16 – 1 =15
15 – 3 = 12
12 – 5 = 7
7 – 7  = 0
So we did 4 times that means 16 is the square of 4.

2.Find out square root number through prime factorization:

Fine the square root of 256
256  =  2*2*2*2*2*2*2*2   = (2*2*2*2)2
                                                                             = 2*2*2*2
                                                  = 16
By this process we can find out that given number is whether perfect square or not.

3.Find square root my long division method.

a)place a bar on every two digits start from units place. If number of digits      are  odd leave odd numbers on left hand side.
b)Find the largest number whose square is less than or equal to the number under the extreme left bar. Take this number as the divisor and the quotient with the number under the extreme left bar as the dividend .divide and get the remainder .
c)bring down the numbers under the next bar to the right of the remainder.
d)Double the divisor and take that number as divisor to the new dividend.
e)guess the largest possible digit to fill the blank which will also become the new digit in the quotient .such that when the new divisor is multiplied to the new quotient and the product is less than or equal to the dividend.
f)since the remainders is 0 and no digits are left in the given number . 



    Multiplication Tips 
   Cubes and Cube Roots