Algebraic Identities
Algebraic Identity Definition:
An Identity is an equality which is true for every value of the variable in it.
Example: ( x+1 ) ( x+2 ) = x2 + 2x + x + 2
= x2 + 3x + 2
For any value of x LHS is equal to RHS,which shows the appearance of identity here.
Some of the identity helpful for solving the problems are given below:
- (a + b )2 = a2 + 2ab + b2
- (a - b )2 = a2 -2ab + b2
- (a + b ) ( a - b ) = a2 - b2
Proof of Identity
( a + b)2
Step 1: expand the term = ( a + b) ( a + b)
Step 2: factories = a ( a + b) + b ( a + b)
Step 3: simplify = a2 + ab + ba + b2
Step 4: add the common term = a2 + 2ab + b2
assign a = 4, b =6
(a + b)2 = a2 + 2ab + b2
(4 + 6)2 = 16 + 2*4*6 +36
(10)2 = 16 + 48 +36
100 = 100
LHS = RHS
List of algebraic identity :
The following are some of the important algebraic identities or expression used in class 9th maths
1. (a + b)2 = a2 + 2ab + b2
Derivation
(a+b)2 = (a+b) (a+b)
factories = a(a+b) + b(a+b)
= a*a + a*b + b*a + b*b
= a2 +2ab+ b 2
2. ( a - b)2 = a2 - 2ab + b2
Derivation
(a-b)2 =(a-b)(a-b)
factories = a(a-b)- b(a-b)
= a*a -a*b - b*a +(- b)*(-b)
= a2 -2ab+ b 2
3. a2
- b2 = (a+b)(a-b)
Derivation
a2
- b2 = (a+b)(a-b)
factories = a(a-b)+b(a-b)
= a2 –ab+ab-b2
= a2 - b2
4. ( x + a ) ( x + b ) = x2 + ( a + b) x + ab
Derivation
( x + a)(x +b) = x(x+b)+a(x+b)
factories =x*x + xb + ax + a*b
=x2
+(a+b)x+ab
5. (x + a ) ( x - b) = x2 + ( a -b ) x - ab
derivation
( x + a)(x - b) = x(x-b) + a( x-b)
factories =x*x - xb + ax - a*b
=x2
+(a - b) x- ab
6. ( x -a ) ( x + b ) = x2 + ( b - a ) x - ab
derivation
( x - a)(x + b) = x(x+b) - a( x+b)
factories =x*x + xb - ax -a*b
=x2
+(b - a) x- ab
7. ( x - a ) ( x - b ) = x2 - ( a + b ) x + ab
derivation
( x - a)(x - b) = x(x-b) - a( x-b)
factories = x*x - xb - ax +a*b
=x2 -( a+ b) x + ab
8. ( a + b )3 = a3 + b3 + 3ab ( a + b )
Derivation
(a+b)(a+b)2=(a + b)(a2 + 2ab + b2)
Derivation
(a+b)(a+b)2=(a + b)(a2 + 2ab + b2)
=a(a2 + 2ab + b2)+ b(a2 +2ab+b2)
=a3 + 2(a2)b+ab2 + (a2)b+2ab2 + b3
=a3 + 3(a2)b+3a(b2) + b3
= a3 + b3 + 3ab ( a + b ) =a3 + 2(a2)b+ab2 + (a2)b+2ab2 + b3
=a3 + 3(a2)b+3a(b2) + b3
9. ( a - b )3 = a3 - b3 - 3ab (a - b )
Derivation
Derivation
(a-b)(a-b)2=(a-b)(a2-2ab+b2)
=a(a2-2ab+b2)-b(a2-2ab+b2)
=a3-2(a2)b+ab2-(a2)b+2ab2–b3
=a3-3(a2)b+3a(b2)-b3
=a3-2(a2)b+ab2-(a2)b+2ab2–b3
=a3-3(a2)b+3a(b2)-b3
= a3 - b3 - 3ab ( a b )
10. (x + y + z)2 = x2 + y2 + z2 + 2xy +2yz + 2xz
11. (x + y - z)2 = x2 + y2 + z2 + 2xy - 2yz - 2xz
12. ( x - y + z)2 = x2 + y2 + z2 - 2xy - 2yz + 2xz
13. (x - y - z)2 = x2 + y2 + z2 - 2xy + 2yz - 2xz
14. x3 + y3 + z3 - 3xyz = (x + y + z ) ( x2 + y2 + z2 - xy - yz -xz)
15. x2 + y2 = 12 [( x + y)2 + ( x - y)2]
16. ( x + a) ( x + b) ( x + c) = x3 + (a + b + c) x2 + ( ab + bc + ca )
x + abc
17. x3 + y3 = (x + y) ( x2 -xy + y2 )
18. x3 - y3 = ( x - y) ( x2 + xy + y2 )
19. x2 + y2 + z2 -xy - yz - zx = 12 [( x - y)2 + (y -z)2 + ( z - x)2]
Examples based on Identity:
Example 1: Factorize the term x2 – 92
Solution: Given x2 – 92
Step 1: First check and make use of identity (a + b) (a - b) = a2 -b2
Step 2: Assign the value in identity x 2 – 9 = ( x + 9) ( x - 9 )
Example 2: Expand ( x - 4y)2
Solution :
Step 1: Make use of the identity ( a -b )2 = a2 - 2ab + b2
Step 2: Assign the value in equation[ a = x, b = 4y ] = ( x)2 - 2 * x * 4y + (4y)2
Step 3: Simplify = x2 - 8xy +164y2